New IMGS-based Preconditioners for Least Squares Problems
نویسنده
چکیده
Convergence acceleration by preconditioning is usually essential when solving the standard least squares problems by an iterative method. IMGS, is an incomplete modiied version of Gram-Schmidt orthogonalization to obtain an incomplete orthogonal factorization pre-conditioner M = R, where A = Q R + E is an approximation of a QR factorization, Q is an orthogonal matrix and R is upper triangular matrix respectively. Based on the IMGS orthogonalization, a relaxed Incomplete Modiied Gram-Schmidt preconditioning and a new recursive selecting strategy of incomplete orthogonal preconditioning which updates the drop tolerance step by step and decides the corresponding value according to the recursive relation are proposed. The numerical experiments show clearly the robustness of this recursive selecting strategy. For the relaxed IMGS preconditioning approach, a suitable relaxation parameter innuences the performance and quality of the preconditioner.
منابع مشابه
Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems
iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...
متن کاملComputational Issues for a New Class of Preconditioners
In this paper we consider solving a sequence of weighted linear least squares problems where the only changes from one problem to the next are the weights and the right hand side (or data). We alternate between iterative and direct methods to solve the normal equations for the least squares problems. The direct method is the Cholesky factorization. For the iterative method we discuss a class of...
متن کاملPreconditioning Methods for Shift-Variant Image Reconstruction
Preconditioning methods can accelerate the convergence of gradient-based iterative methods for tomographic image reconstruction and image restoration. Circulant preconditioners have been used extensively for shiftinvariant problems. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. For inverse p...
متن کاملA Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems
We analyze and discuss matrix-free and limited-memory preconditioners (LMP) for sparse symmetric positive definite systems and normal equations of large and sparse least-squares problems. The preconditioners are based on a partial Cholesky factorization and can be coupled with a deflation strategy. The construction of the preconditioners requires only matrix-vector products, is breakdown-free, ...
متن کاملConjugate-Gradient Preconditioning Methods For Shift-Variant PET Image Reconstruction - Image Processing, IEEE Transactions on
Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996